z-logo
open-access-imgOpen Access
Analysis of Ethylene Signal-Transduction Kinetics Associated with Seedling-Growth Response and Chitinase Induction in Wild-Type and Mutant Arabidopsis
Author(s) -
Q. G. Chen,
Anthony B. Bleecker
Publication year - 1995
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.108.2.597
Subject(s) - chitinase , arabidopsis , ethylene , mutant , biology , seedling , signal transduction , biochemistry , wild type , arabidopsis thaliana , microbiology and biotechnology , gene , botany , catalysis
Kinetic aspects of ethylene-mediated signal transduction leading to seedling-growth inhibition and chitinase induction in Arabidopsis were investigated by the introduction of defined mutations in components of these pathways. Dose-response analysis of wild-type responses indicated that the rate-limiting steps for seedling responses and Arabidopsis basic-chitinase induction displayed Michaelis-Menten kinetics with apparent dissociation constants of the response (Kr) of 0.1 and 1.4 microL L-1 ethylene, respectively. In the ethylene-insensitive etr1-1 and ein2-32 mutant lines, both Arabidopsis basic-chitinase induction and seedling-growth responses were completely disrupted, whereas the weaker etr1-2 allele eliminated the chitinase-induction response but only partially disrupted the seedling responses. A heterologous reporter gene containing the chitinase promoter from bean (bean basic-chitinase-beta-glucuronidase) displayed subsensitive kinetics (Kr 120 microL L-1 ethylene) compared to the response of the endogenous basic-chitinase response (Kr 1.4 microL L-1 ethylene). A model for ethylene signal transduction that accounts for the observed variation in ethylene dose-response relationships is presented. The relationship between the model and the biochemical mechanisms of well-characterized signal-transduction systems in animals is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom