Light-Induced Chloroplast [alpha]-Amylase in Pearl Millet (Pennisetum americanum)
Author(s) -
K. J. M. Vally,
Rameshwar Sharma
Publication year - 1995
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.107.2.401
Subject(s) - chloroplast , biology , alpha amylase , amylase , biochemistry , polyacrylamide gel electrophoresis , isozyme , gel electrophoresis , molecular mass , thermostability , western blot , enzyme , gene
In pearl millet (Pennisetum americanum) seedlings light induces the appearance of a leaf [alpha]-amylase isozyme. The leaf [alpha]-amylase isozyme was present in enriched amounts in isolated chloroplast but it could not be detected in isolated etioplasts. The chloroplast [alpha]-amylase was present in both mesophyll and bundle-sheath chloroplasts. Preliminary characterization indicated that molecular properties of chloroplast [alpha]-amylase were like those of a typical [alpha]-amylase. The plastidic [alpha]-amylase had a molecular mass of 46 kD, pH optimum of 6.2, required Ca2+ for activity and thermostability, but lost activity in the presence of ethylenediaminetetracetate. Plastidic [alpha]-amylase activity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis could be renatured in situ by Triton X-100. Western blot analysis demonstrated that this protein was antigenically similar to a maize seed [alpha]-amylase. In vivo [35S]methionine labeling of bundle-sheath strands isolated from light-grown leaves followed by immunoprecipitation revealed that bundlesheath strands synthesized plastidic [alpha]-amylase de novo.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom