z-logo
open-access-imgOpen Access
A [beta]-Glucosidase from Lodgepole Pine Xylem Specific for the Lignin Precursor Coniferin
Author(s) -
D. Palitha Dharmawardhana,
B. E. Ellis,
John E. Carlson
Publication year - 1995
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.107.2.331
Subject(s) - monolignol , coniferyl alcohol , chemistry , biochemistry , lignin , glucoside , enzyme , biosynthesis , medicine , alternative medicine , organic chemistry , pathology
Coniferin, the glucoside of the monolignol coniferyl alcohol, accumulates to high levels in gymnosperms during spring-cambial reactivation. A cinnamyl alcohol glucoside/beta-glucosidase system is thought to play a key role in lignification by releasing the monolignol aglycones. Investigation of such an enzyme system in the xylem of Pinus contorta var latifolia Engelm. revealed two major beta-glucosidases. One efficiently hydrolyzed the native substrate, coniferin, and the other was more active against synthetic glucosides. The coniferin beta-glucosidase was purified to apparent homogeneity using anion exchange, hydrophobic interaction, and size-exclusion chromatography. The apparent native molecular weight was estimated to be 60,000. A dominant 28-kD protein and a minor 24-kD protein were detected in the purified preparation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunological evidence from polyclonal antibodies directed against the synthetic N-terminal peptide of the 24-kD protein suggested that the native protein is a dimer of 28-kD subunit size. The N-terminal sequence showed that coniferin beta-glucosidase has high homology to known plant beta-glucosidases. Coniferin, syringin, and a synthetic coniferin analog were preferred substrates for the coniferin beta-glucosidase. In situ localization using the chromogenic coniferin analog showed the exclusive presence of beta-glucosidase activity in the differentiating xylem, similar to peroxidase activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom