z-logo
open-access-imgOpen Access
SEUSSandAINTEGUMENTAMediate Patterning and Ovule Initiation during Gynoecium Medial Domain Development
Author(s) -
Sridevi Azhakanandam,
Staci Nole-Wilson,
Fang Bao,
Robert G. Franks
Publication year - 2008
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.107.114751
Subject(s) - gynoecium , ovule , domain (mathematical analysis) , biology , anatomy , botany , mathematics , stamen , mathematical analysis , pollen
The Arabidopsis (Arabidopsis thaliana) gynoecium, the female floral reproductive structure, requires the action of genes that specify positional identities during its development to generate an organ competent for seed development and dispersal. Early in gynoecial development, patterning events divide the primordium into distinct domains that will give rise to specific tissues and organs. The medial domain of the gynoecium gives rise to the ovules, and several other structures critical for reproductive competence. Here we report a synergistic genetic interaction between seuss and aintegumenta mutants resulting in a complete loss of ovule initiation and a reduction of the structures derived from the medial domain. We show that patterning events are disrupted early in the development of the seuss aintegumenta gynoecia and we identify PHABULOSA (PHB), REVOLUTA, and CRABS CLAW (CRC) as potential downstream targets of SEUSS (SEU) and AINTEGUMENTA (ANT) regulation. Our genetic data suggest that SEU additionally functions in pathways that are partially redundant and parallel to PHB, CRC, and ANT. Thus, SEU and ANT are part of a complex and robust molecular system that coordinates patterning cues and cellular proliferation along the three positional axes of the developing gynoecium.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom