z-logo
open-access-imgOpen Access
Micro-Electrode Flux Estimation Confirms That the Solanum pimpinellifolium cu3 Mutant Still Responds to Systemin
Author(s) -
Frank C. Lanfermeijer,
Marten Staal,
Robert Malinowski,
Johannes W. Stratmann,
J. Theo M. Elzenga
Publication year - 2007
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.107.110643
Subject(s) - brassinosteroid , mutant , flux (metallurgy) , biology , elicitor , nicotiana tabacum , efflux , wild type , microbiology and biotechnology , arabidopsis , solanum , biochemistry , botany , chemistry , gene , organic chemistry
In this study, we introduce the Micro-Electrode Ion Flux Estimation technique as a sensitive and accurate technique to study systemin-induced changes in ion fluxes from isolated nearly intact plant tissues. Our results demonstrate the effectiveness and value of the Micro-Electrode Ion Flux Estimation technique to monitor and characterize those elicitor-induced ion flux changes from intact tissues. We used the method to monitor the systemin-induced changes in ion fluxes from leaf tissue of various plant species, including wild-type and cu3 mutant tomato (Solanum pimpinellifolium) plants, and confirm previous observations, but now in intact leaf tissue. Upon exposure of leaf tissue of plant species from the subtribe solaneae to systemin, the H(+) influx and K(+) efflux were transiently strongly increased. Plant species of other clades did not show a response upon systemin exposure. Although it has been reported that the gene containing the cu3 null mutation is identical to the SR160/tBRI1 gene, which encodes the systemin/brassinosteroid receptor and is essential in systemin and brassinosteroid perception, we observed no differences in the response of H(+) and K(+) fluxes from both wild-type and mutant leaf tissue to systemin. Also, the effects of various pharmacological effectors on systemin-induced flux changes were similar. Moreover, a SR160/tBRI1 transgene-containing tobacco (Nicotiana tabacum) line was insensitive to systemin, whereas both this line and its wild-type predecessor were responsive to the elicitor flg22. Our results support the conclusion that the Cu3 receptor of tomato is not the systemin receptor, and, hence, another receptor is the principal systemin receptor.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom