z-logo
open-access-imgOpen Access
Ozone, Sulfur Dioxide, and Ultraviolet B Have Similar Effects on mRNA Accumulation of Antioxidant Genes in Nicotiana plumbaginifolia L
Author(s) -
Hilde Willekens,
Wim Van Camp,
Marc Van Montagu,
Dirk Inzé,
Christian Langebartels,
Heinrich Sandermann
Publication year - 1994
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.106.3.1007
Subject(s) - apx , peroxidase , nicotiana tabacum , superoxide dismutase , antioxidant , glutathione reductase , biochemistry , chemistry , glutathione peroxidase , glutathione , nicotiana , microbiology and biotechnology , biology , gene , enzyme , solanaceae
We have studied the expression of antioxidant genes in response to near ambient conditions of O3, SO2, and ultraviolet B (UV-B) in Nicotiana plumbaginifolia L. The genes analyzed encode four different superoxide dismutases (SODs), three catalases (Cat1, Cat2, and Cat3), the cytosolic ascorbate peroxidase (cyt APx), and glutathione peroxidase (GPx). The experimental setup for each treatment was essentially the same and caused no visible damage, thus allowing direct comparison of the different stress responses. Our data showed that the effects of O3, SO2, and UV-B on the antioxidant genes are very similar, although the response to SO2 is generally less pronounced and delayed. The effects of the different stresses are characterized by a decline in Cat1, a moderate increase in Cat3, and a strong increase in Cat2 and GPx. Remarkably, SODs and cyt APx were not affected. Analysis of SOD and APx expression in the ozone-sensitive Nicotiana tabacum L. cv PBD6 revealed that induction of the cytosolic copper/zinc SOD and cyt APx occurs only with the onset of visible damage. It is proposed that alterations in mRNA levels of catalases and GPx, but not of SODs and cyt APx, form part of the initial antioxidant response to O3, SO2, and UV-B in Nicotiana.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom