z-logo
open-access-imgOpen Access
High-Oleate Oilseeds Fail to Develop at Low Temperature
Author(s) -
Martine Miquel,
John Browse
Publication year - 1994
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.106.2.421
Subject(s) - germination , canola , wild type , biology , mutant , arabidopsis thaliana , arabidopsis , horticulture , botany , food science , agronomy , biochemistry , gene
The fad2 mutants of Arabidopsis thaliana are deficient in activity of the endoplasmic reticulum oleate desaturase that is the main enzyme responsible for polyunsaturated lipid synthesis in developing seeds of oil crops. A comparison of wild-type and fad2 seeds developing on heterozygous (FAD2/-) plants was used as a model for genetically engineered high-oleate oilseeds of species such as soybean and canola. When fad2 seeds developed at normal temperatures (22[deg]C), they showed high viability compared to wild-type seeds. When a portion of seed development took place at 6[deg]C, germination of the wild-type siblings remained high but germination of fad2 segregants declined considerably. This was true even when exposure to low temperature was limited to the final stages of seed filling and maturation. Compared to wild-type seeds, fully viable fad2 seeds produced at 22[deg]C had reduced lipid contents and were slower to germinate at 10 and 6[deg]C. Taken together, these results indicate that for some oilseed species at least, molecular genetic manipulation of oleate levels in the oil may result in plant lines with unacceptable performance in the field.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom