z-logo
open-access-imgOpen Access
Plant Defense Response to Fungal Pathogens (II. G-Protein-Mediated Changes in Host Plasma Membrane Redox Reactions)
Author(s) -
Rosario VeraEstrella,
Verna J. Higgins,
Eduardo Blumwald
Publication year - 1994
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.106.1.97
Subject(s) - elicitor , biochemistry , redox , biology , mastoparan , chemistry , enzyme , signal transduction , g protein , organic chemistry
Elicitor preparations containing the avr5 gene products from races 4 and 2.3 of Cladosporium fulvum, and tomato (Lycopersicon esculentum L.) cells containing the resistance gene Cf5 were used to investigate the involvement of redox processes in the production of active oxygen species associated with the plant response to the fungal elicitors. Here we demonstrate that certain race-specific elicitors of C. fulvum induced an increase in ferricyanide reduction in enriched plasma membrane fractions of tomato cells. The addition of elicitors to plasma membranes also induced increases in NADH oxidase and NADH-dependent cytochrome c reductase activities, whereas ascorbate peroxidase activity was decreased. These results suggest that changes in the host plasma membrane redox processes, transferring electrons from reducing agents to oxygen, could be involved in the increased production of active oxygen species by the race-specific elicitors. Our results also show that the dephosphorylation of enzymes involved in redox reactions is responsible for the race-specific induced redox activity. The effects of guanidine nucleotide analogs and mastoparan on the activation of plasma membrane redox reactions support the role of GTP-binding proteins in the transduction of signals leading to the activation of the defense response mechanisms of tomato against fungal pathogens.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom