z-logo
open-access-imgOpen Access
Characterization of a Novel Plant Promoter Specifically Induced by Heavy Metal and Identification of the Promoter Regions Conferring Heavy Metal Responsiveness
Author(s) -
Xiaoting Qi,
Yuxiu Zhang,
Tuanyao Chai
Publication year - 2006
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.106.080283
Subject(s) - cauliflower mosaic virus , promoter , metallothionein , biology , nicotiana tabacum , gene , microbiology and biotechnology , metal , regulatory sequence , gene expression , genetically modified crops , genetics , transgene , chemistry , organic chemistry
The bean (Phaseolus vulgaris) stress-related gene number 2 (PvSR2) gene responds to heavy metals but not to other forms of environmental stresses. To elucidate its heavy metal-regulatory mechanism at the transcriptional level, we isolated and characterized the promoter region (-1623/+48) of PvSR2. Deletions from the 5' end revealed that a sequence between -222 and -147 relative to the transcriptional start site was sufficient for heavy metal-specific induction of the promoter region of PvSR2. Detailed analysis of this 76-bp fragment indicated that heavy metal-responsive elements were localized in two regions (-222/-188 and -187/-147), each of which could separately confer heavy metal-responsive expression on the beta-glucuronidase gene in the context of a minimal cauliflower mosaic virus 35S promoter. Region I (-222/-188) contains a motif (metal-regulatory element-like sequence) similar to the consensus metal-regulatory element of the animal metallothionein gene, and mutation of this motif eliminated the heavy metal-inducible function of region I. Region II (-187/-147) had no similarity to previously identified cis-acting elements involved in heavy metal induction, suggesting the presence of a novel heavy metal-responsive element. Transformed tobacco (Nicotiana tabacum) seedlings expressing beta-glucuronidase under control of the PvSR2 promoter region (-687/+48) showed heavy metal-specific responsive activity that depended on the type and concentration of the heavy metal and the type of organ. These findings further our understanding of the regulation of PvSR2 expression and provide a new heavy-metal-inducible promoter system in transgenic plants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom