z-logo
open-access-imgOpen Access
Changes in Soybean Fruit Ca2+ (Sr2+) and K+ (Rb+) Transport Ability during Development
Author(s) -
Joseph A. Laszlo
Publication year - 1994
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.104.3.937
Subject(s) - point of delivery , embryo , phloem , limiting , chemistry , dry matter , horticulture , embryogenesis , botany , zoology , biology , microbiology and biotechnology , mechanical engineering , engineering
Mineral uptake by soybean (Glycine max [L.] Merrill) seeds during development can significantly affect seed quality and value. Little is known about seed mineral transport mechanisms and control processes, although it is clear that each mineral displays a characteristic accumulation pattern. Ion-specific accumulation patterns could result from changes in source availability, in transport kinetics through the seed pod and seed coat, or in the mineral uptake capability of the embryo. Ca2+ and K+ have negligible and high phloem mobilities, respectively. Ca2+ accumulation lags behind dry matter (C and N) and K+ accumulation in soybean embryos. To eliminate source availability influences, the Ca2+ and K+ uptake ability of isolated embryos and of seeds in pod culture was examined during seed development. Sr2+ and Rb+ were used as transport analogs of Ca2+ and K+, respectively. Sr2+ and Rb+ uptake rates by isolated embryos increased with seed fresh weight, indicating that the embryo was not limiting Ca2+ accumulation. However, the pod-cultured embryo Sr2+ and Rb+ uptake rate trends differed: Rb+ uptake increased with seed fresh weight, whereas Sr2+ uptake rates remained constant or decreased slightly. Ovule Sr2+ influx data suggest that the pod and seed coat impose a transport barrier that could account for the relative decline in embryo Ca2+ content during development.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom