z-logo
open-access-imgOpen Access
Temporal and Spatial Expression Pattern of Sucrose Synthase during Tomato Fruit Development
Author(s) -
Fei Wang,
Alan G. Smith,
M. L. Brenner
Publication year - 1994
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.104.2.535
Subject(s) - sucrose synthase , sucrose , sucrose phosphate synthase , starch synthase , atp synthase , vascular bundle , biology , anthesis , messenger rna , lycopersicon , biochemistry , botany , starch , enzyme , gene , invertase , cultivar , amylopectin , amylose
Sucrose synthase is proposed to play an important role in the early stages of tomato fruit (Lycopersicon esculentum Mill.) growth. In this work, the temporal and spatial expression patterns of sucrose synthase during tomato fruit development were investigated. Fruit contained the majority of the sucrose synthase protein and mRNA relative to other organs. Only trace levels of sucrose synthase protein and mRNA were detected in the stem, petiole, and roots. Sucrose synthase mRNA was detected in pistils prior to anthesis, reached peak levels in fruit 5 to 7 d after anthesis (DAA), and was not detectable after 35 DAA. Sucrose synthase protein levels reached a maximum at 20 to 25 DAA and then declined to nondetectable levels after 45 DAA. The lack of coordination between protein and mRNA levels suggests that sucrose synthase expression may be controlled at the levels of both transcription and translation. Sucrose synthase mRNA was differentially localized in the fruit, being most abundant in the mesocarp cells adjacent to the placenta, the columella, and the cells surrounding the vascular bundle. Except around the vascular tissue, the localization of sucrose synthase mRNA positively correlates with starch granule accumulation at the cellular level.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom