z-logo
open-access-imgOpen Access
The Highly Abundant Chlorophyll-Protein Complex of Iron-Deficient Synechococcus sp. PCC7942 (CP43[prime]) Is Encoded by the isiA Gene
Author(s) -
Robert L. Burnap,
T. A. Troyan,
Louis A. Sherman
Publication year - 1993
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.3.893
Subject(s) - mutant , biology , operon , photosystem ii , synechococcus , biochemistry , wild type , mutagenesis , phycobilisome , gene , photosynthesis , cyanobacteria , genetics , bacteria
A chlorophyll (Chl)-protein complex designated CPVI-4 becomes the major pigment-protein complex in Synechococcus sp. PCC7942 cells grown under conditions of iron limitation. Work by Laudenbach et al. (J Bacteriol [1988] 170: 5018-5026) has identified an iron-repressible operon, designated isiAB, containing the flavodoxin gene and a gene predicted to encode a Chl-binding protein resembling CP43 of photosystem II. To test the hypothesis that the CP43-like protein is a component of the CPVI-4 complex, we have inactivated the isiAB operon in Synechococcus sp. PCC7942 using directed insertional mutagenesis. Mutant cells grown under conditions of iron limitation exhibit pronounced changes in their spectroscopic and photosynthetic properties relative to similarly grown wild-type cells. Notably, the strong 77 K fluorescence emission at 685 nm, which dominates the spectrum of iron-deficient wild-type cells, is dramatically reduced in the mutant. The loss of this emission appears to unmask the otherwise obscured photosystem II emissions at 685 and 695 nm. Most importantly, mildly denaturing gel electrophoresis shows that mutant cells no longer express the CPVI-4 complex, indicating that the isiA gene encodes a component of this abundant Chl-protein complex.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom