z-logo
open-access-imgOpen Access
Expression of Acid Invertase Gene Controls Sugar Composition in Tomato (Lycopersicon) Fruit
Author(s) -
Ellen Klann,
Roger T. Chetelat,
A. B. Bennett
Publication year - 1993
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.3.863
Subject(s) - invertase , sucrose , lycopersicon , fructose , sugar , biology , sucrose synthase , sucrose phosphate synthase , biochemistry , botany
A wild tomato species, Lycopersicon chmielewskii, accumulates high levels of soluble sugar in mature fruit and, unlike the domesticated tomato species, Lycopersicon esculentum, accumulates sucrose rather than glucose and fructose. Genetic and biochemical analyses of progeny resulting from a cross of L. chmielewskii with L. esculentum have previously indicated that the trait of sucrose accumulation is controlled by a single recessive gene and is associated with low levels of acid invertase protein in the developing fruit. Analysis of progeny from the BC2F3 generation from the L. esculentum x L. chmielewskii cross revealed that sucrose-accumulating fruit accumulate sugar in two phases corresponding to fruit expansion and fruit maturation and that the majority of the sucrose was stored in the latter phase after the fruit had reached maximum size. The only significant enzymic difference between the sucrose-accumulating and hexose-accumulating fruit was the lack of acid invertase activity in sucrose-accumulating fruit. Sucrose phosphate synthase activity did not increase in the sucrose-accumulating fruit during late development when the rate of sucrose accumulation increased. The lack of acid invertase activity in sucrose-accumulating fruit was correlated with inheritance of the L. chmielewskii acid invertase gene and the absence of acid invertase mRNA in developing fruit. This suggests that the L.chmielewskii invertase gene is transcriptionally silent in fruit and that this is the basis for sucrose accumulation in progeny derived from the interspecific cross of L. esculentum and L. chmielewskii.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom