z-logo
open-access-imgOpen Access
CO2 Exchange and Growth of the Crassulacean Acid Metabolism Plant Opuntia ficus-indica under Elevated CO2 in Open-Top Chambers
Author(s) -
M. Cui,
P. M. Miller,
Park S. Nobel
Publication year - 1993
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.2.519
Subject(s) - cladodes , crassulacean acid metabolism , botany , photosynthesis , biology , chlorophyll , horticulture , biomass (ecology) , zoology , chemistry , cactus , agronomy
CO2 uptake, water vapor conductance, and biomass production of Opuntia ficus-indica, a Crassulacean acid metabolism species, were studied at CO2 concentrations of 370, 520, and 720 [mu]L L-1 in open-top chambers during a 23-week period. Nine weeks after planting, daily net CO2 uptake for basal cladodes at 520 and 720 [mu]L L-1 of CO2 was 76 and 98% higher, respectively, than at 370 [mu]L L-1. Eight weeks after daughter cladodes emerged, their daily net CO2 uptake was 35 and 49% higher at 520 and 720 [mu]L L-1 of C02, respectively, than at 370 [mu]L L-1. Daily water-use efficiency was 88% higher under elevated CO2 for basal cladodes and 57% higher for daughter cladodes. The daily net CO2 uptake capacity for basal cladodes increased for 4 weeks after planting and then remained fairly constant, whereas for daughter cladodes, it increased with cladode age, became maximal at 8 to 14 weeks, and then declined. The percentage enhancement in daily net CO2 uptake caused by elevated CO2 was greatest initially for basal cladodes and at 8 to 14 weeks for daughter cladodes. The chlorophyll content per unit fresh weight of chlorenchyma for daughter cladodes at 8 weeks was 19 and 62% lower in 520 and 720 [mu]L L-1 of CO2, respectively, compared with 370 [mu]L L-1. Despite the reduced chlorophyll content, plant biomass production during 23 weeks in 520 and 720 [mu]L L-1 of CO2 was 21 and 55% higher, respectively, than at 370 [mu]L L-1. The root dry weight nearly tripled as the C02 concentration was doubled, causing the root/shoot ratio to increase with CO2 concentration. During the 23-week period, elevated CO2 significantly increased CO2 uptake and biomass production of O. ficus-indica.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom