z-logo
open-access-imgOpen Access
Long-Term Anoxia Tolerance (Multi-Level Regulation of Gene Expression in the Amphibious Plant Acorus calamus L.)
Author(s) -
Marcel Bucher,
Cris Kuhlemeier
Publication year - 1993
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.2.441
Subject(s) - alcohol dehydrogenase , acorus calamus , biology , fructose bisphosphate aldolase , gene expression , pyruvate decarboxylase , fructose , aldolase a , biochemistry , gene , isozyme , botany , enzyme , rhizome
Acorus calamus is a monocotyledonous wetland plant that can withstand extremely long periods of anoxia. We have investigated the expression of genes coding for pyruvate decarboxylase (Pdc), alcohol dehydrogenase (Adh), and fructose-1,6-bisphosphate aldolase (Ald) during periods of anoxia ranging from 2 h to 2 months. Upon anoxic incubation, Pdc mRNA levels peak at 6 h, followed by Adh and Ald, which peak at 12 and 72 h, respectively. Subsequently, the mRNA levels of all three genes decline within days to low levels. In contrast, alcohol dehydrogenase (ADH) protein levels increase steadily for at least a week and then remain constant. Native gel electrophoresis demonstrates the presence of two sets of ADH isozymes, one present constitutively, the other enhanced during anoxia. Translation initiation factor 4A protein levels, used as a control, remain constant during 2 months of anoxia. The results suggest that A. calamus has developed a complex anaerobic response consisting of differential regulation of transcription, translation, and posttranslational processes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom