z-logo
open-access-imgOpen Access
The Arabidopsis Cytosolic Thioredoxin h5 Gene Induction by Oxidative Stress and Its W-Box-Mediated Response to Pathogen Elicitor
Author(s) -
Christophe Laloi,
Dominique Mestres-Ortega,
Yves Marco,
Yves Meyer,
JeanPhilippe Reichheld
Publication year - 2004
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.035782
Subject(s) - elicitor , thioredoxin , pseudomonas syringae , biology , arabidopsis , wrky protein domain , transcription factor , cytosol , gene , microbiology and biotechnology , genetics , biochemistry , mutant , enzyme
The AtTRXh5 protein belongs to the cytosolic thioredoxins h family that, in Arabidopsis, contains eight members showing very distinct patterns and levels of expression. Here, we show that the AtTRXh5 gene is up-regulated during wounding, abscission, and senescence, as well as during incompatible interactions with the bacterial pathogen Pseudomonas syringae. By electrophoretic mobility shift assays, a binding activity on a W-box in the AtTRXh5 promoter region was found induced by treatments with the P. syringae-derived elicitor peptide flg22, suggesting that a WRKY transcription factor controls AtTRXh5 induction upon elicitor treatment. Remarkably, AtTRXh5 was up-regulated in plants overexpressing WRKY6. More generally, AtTRXh5 is induced in response to oxidative stress conditions. Collectively, our data indicate a possible implication of the cytosolic thioredoxin AtTRXh5 in response to pathogens and to oxidative stresses. In addition, this regulation is unique to AtTRXh5 among the thioredoxin h family, arguing in favor of a speciation rather than to a redundancy of the members of this multigenic family.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom