z-logo
open-access-imgOpen Access
Modeling Grain Nitrogen Accumulation and Protein Composition to Understand the Sink/Source Regulations of Nitrogen Remobilization for Wheat
Author(s) -
Pierre Martre,
John R. Porter,
P. D. Jamieson,
Eugène Triboï
Publication year - 2003
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.030585
Subject(s) - anthesis , glutenin , gliadin , agronomy , cultivar , nitrogen , storage protein , sink (geography) , gluten , poaceae , biology , human fertilization , chemistry , food science , biochemistry , protein subunit , cartography , organic chemistry , gene , geography
A functional explanation for the regulation of grain nitrogen (N) accumulation in cereal by environmental and genetic factors remains elusive. Here, new mechanistic hypotheses of grain N accumulation are proposed and tested for wheat (Triticum aestivum). First, we tested experimentally the hypothesis that grain N accumulation is mostly source regulated. Four contrasting cultivars, in terms of their grain N concentrations and yield potentials, were grown with non-limiting N supply. Grain number per ear was reduced by removing the top part of the ear at anthesis. Reduction in grain number gave a significant increase in N content per grain for all cultivars, showing that grain N accumulation was source regulated. However, on a per ear basis, cultivars with a high grain number fully compensated their N accumulation for reduced grain number at anthesis. Cultivars with a lower grain number did not compensate completely, and grain N per ear was decreased by 16%. Second, new mechanistic hypotheses of the origins of grain N source regulation and its response to environment were tested by simulation. The hypotheses were: (a). The regulation by N sources of grain N accumulation applies only for the storage proteins (i.e. gliadin and glutenin fractions); (b). accumulation of structural and metabolic proteins (i.e. albumin-globulin and amphiphilic fractions) is sink-regulated; and (c). N partitioning between gliadins and glutenins is constant during grain development and unmodified by growing conditions. Comparison of experimental and simulation results of the accumulation of grain protein fractions under wide ranges of N fertilization, temperatures, and irrigation supported these hypotheses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom