z-logo
open-access-imgOpen Access
Overexpression of a Mutant Basic Helix-Loop-Helix Protein HFR1, HFR1-ΔN105, Activates a Branch Pathway of Light Signaling in Arabidopsis
Author(s) -
Ki-Young Yang,
YoungMi Kim,
Seunghee Lee,
PillSoon Song,
MoonSoo Soh
Publication year - 2003
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.029751
Subject(s) - cryptochrome , arabidopsis , phytochrome , biology , mutant , microbiology and biotechnology , phytochrome a , signal transduction , hypocotyl , arabidopsis thaliana , genetics , basic helix loop helix , gene , transcription factor , botany , circadian clock , dna binding protein , red light
The HFR1, a basic helix-loop-helix protein, is required for a subset of phytochrome A-mediated photoresponses in Arabidopsis. Here, we show that overexpression of the HFR1-deltaN105 mutant, which lacks the N-terminal 105 amino acids, confers exaggerated photoresponses even in darkness. Physiological analysis implied that overexpression of HFR1-deltaN105 activated constitutively a branch pathway of light signaling that mediates a subset of photomorphogenic responses, including germination, de-etiolation, gravitropic hypocotyl growth, blocking of greening, and expression of some light-regulated genes such as CAB, DRT112, PSAE, PSBL, PORA, and XTR7, without affecting the light-responsiveness of anthocyanin accumulation and expression of other light-regulated genes such as CHS and PSBS. Although the end-of-day far-red light response and petiole elongation were suppressed in the HFR1-deltaN105-overexpressing plants, flowering time was not affected by HFR1-deltaN105. In addition, the HFR1-deltaN105-overexpressing plants showed hypersensitive photoresponses in the inhibition of hypocotyl elongation, dependently on phytochrome A, FHY1, and FHY3 under FR light or phyB under R light, respectively. Moreover, our double mutant analysis suggested that the hypersensitive photoresponse is due to functional cooperation between HFR1-deltaN105 and other light-signaling components including HY5, a basic leucine zipper protein. Taken together, our results of gain-of-function approach with HFR1-deltaN105 suggest the existence of a complex and important basic helix-loop-helix protein-mediated transcriptional network controlling a branch pathway of light signaling and provide a useful framework for further genetic dissection of light-signaling network in Arabidopsis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom