z-logo
open-access-imgOpen Access
Knock-Out of the Genes Coding for the Rieske Protein and the ATP-Synthase δ-Subunit of Arabidopsis. Effects on Photosynthesis, Thylakoid Protein Composition, and Nuclear Chloroplast Gene Expression
Author(s) -
Daniela Maiwald,
Angela Dietzmann,
Peter Jahns,
Paolo Pesaresi,
Pierre Joliot,
Anne Joliot,
Joshua Z. Levin,
Francesco Salamini,
Dario Leister
Publication year - 2003
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.024190
Subject(s) - thylakoid , p700 , biology , chloroplast , photosystem i , photosystem ii , biochemistry , photosystem , cytochrome f , protein subunit , cytochrome b6f complex , photosynthesis , gene
In Arabidopsis, the nuclear genes PetC and AtpD code for the Rieske protein of the cytochrome b(6)/f (cyt b(6)/f) complex and the delta-subunit of the chloroplast ATP synthase (cpATPase), respectively. Knock-out alleles for each of these loci have been identified. Greenhouse-grown petc-2 and atpd-1 mutants are seedling lethal, whereas heterotrophically propagated plants display a high-chlorophyll (Chl)-fluorescence phenotype, indicating that the products of PetC and AtpD are essential for photosynthesis. Additional effects of the mutations in axenic culture include altered leaf coloration and increased photosensitivity. Lack of the Rieske protein affects the stability of cyt b(6)/f and influences the level of other thylakoid proteins, particularly those of photosystem II. In petc-2, linear electron flow is blocked, leading to an altered redox state of both the primary quinone acceptor Q(A) in photosystem II and the reaction center Chl P700 in photosystem I. Absence of cpATPase-delta destabilizes the entire cpATPase complex, whereas residual accumulation of cyt b(6)/f and of the photosystems still allows linear electron flow. In atpd-1, the increase in non-photochemical quenching of Chl fluorescence and a higher de-epoxidation state of xanthophyll cycle pigments under low light is compatible with a slower dissipation of the transthylakoid proton gradient. Further and clear differences between the two mutations are evident when mRNA expression profiles of nucleus-encoded chloroplast proteins are considered, suggesting that the physiological states conditioned by the two mutations trigger different modes of plastid signaling and nuclear response.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom