z-logo
open-access-imgOpen Access
C-Terminal KDEL Sequence of A KDEL-Tailed Cysteine Proteinase (Sulfhydryl-Endopeptidase) Is Involved in Formation of KDEL Vesicle and in Efficient Vacuolar Transport of Sulfhydryl-Endopeptidase
Author(s) -
Takashi Okamoto,
Tomoo Shimada,
Ikuko HaraNishimura,
Mikio Nishimura,
Takao Minamikawa
Publication year - 2003
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.021147
Subject(s) - kdel , endoplasmic reticulum , vacuole , biology , biochemistry , nicotiana tabacum , cysteine protease , golgi apparatus , er retention , brefeldin a , mutant , microbiology and biotechnology , cysteine , enzyme , cytoplasm , gene
Sulfhydryl-endopeptidase (SH-EP) is a papain-type vacuolar proteinase expressed in cotyledons of germinated Vigna mungo seeds, and the enzyme possesses a C-terminal propeptide containing KDEL tail, an endoplasmic reticulum retention signal for soluble proteins. SH-EP is transported to vacuoles via a KDEL vesicle (KV) through a Golgi complex-independent route. To see the function of the KDEL sequence of SH-EP, wild-type SH-EP and its KDEL deletion mutant (SH-EPDeltaKDEL) were heterologously expressed in Arabidopsis and in cultured tobacco Bright Yellow 2 cells, and their intracellular transport pathways and localizations were analyzed. A combination of the results from analyses for transformed Arabidopsis and tobacco (Nicotiana tabacum) cells indicated that wild-type SH-EP is packed into KV-like vesicles through the KDEL sequence and is transported to vacuoles in the cells of transformants. In contrast, KV was not formed/induced in the cells expressing SH-EPDeltaKDEL, and the mutant protein was mainly secreted. Therefore, the C-terminal KDEL sequence of the KDEL-tailed cysteine proteinase is thought to be involved in the formation of KV, and in the efficient vacuolar transport of the proteins through KV.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom