z-logo
open-access-imgOpen Access
Arabidopsis D-Type Cyclin CYCD4;1 Is a Novel Cyclin Partner of B2-Type Cyclin-Dependent Kinase
Author(s) -
Atsushi Kono,
Chikage UmedaHara,
Jeongkyung Lee,
Masaki Ito,
Hirofumi Uchimiya,
Masaaki Umeda
Publication year - 2003
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.020644
Subject(s) - biology , cyclin dependent kinase , cyclin , cyclin a , cyclin a2 , cyclin dependent kinase 1 , microbiology and biotechnology , cyclin b , cyclin d , kinase , meristem , cyclin dependent kinase 2 , cell cycle , protein kinase a , biochemistry , gene
B-type cyclin-dependent kinases (CDKs) are unique to plants and are assumed to be involved in the control of the G2-to-M phase progression and mitotic events. However, little is known about their cyclin partners. In Arabidopsis, we isolated cDNA encoding the D-type cyclin CYCD4;1 by a yeast (Saccharomyces cerevisiae) two-hybrid screening using CDKB2;1 as bait. In vitro pull-down assay showed that CYCD4;1 bound to CDKB2;1 and CDKA;1. Protein complexes of CYCD4;1-CDKA;1 and CYCD4;1-CDKB2;1 in insect cells exhibited histone H1-kinase activity. Promoter analysis using the luciferase reporter gene showed that CDKB2;1 was expressed from early G2 to M phase, whereas CYCD4;1 was expressed throughout the cell cycle. In situ hybridization of plant tissues revealed that both CDKB2;1 and CYCD4;1 transcripts accumulated in the shoot apical meristem, leaf primordia, vasculature of leaves, and tapetal cells in anthers. Our results suggest that CDKB2;1 and CYCD4;1 may form an active kinase complex during G2/M phase and control the development of particular tissues.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom