z-logo
open-access-imgOpen Access
Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps
Author(s) -
Andrew Groover,
Joseph R. Fontana,
Juana M. Arroyo,
Cristina Yordán,
W. Richard McCombie,
Robert A. Martienssen
Publication year - 2003
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.103.020099
Subject(s) - biology , secretion , gene , secretory protein , secretory pathway , signal peptide , membrane protein , microbiology and biotechnology , tunicamycin , insertional mutagenesis , glycosylation , genetics , biochemistry , mutant , peptide sequence , endoplasmic reticulum , golgi apparatus , unfolded protein response , membrane
Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a beta-glucuronidase reporter enzyme that is inhibited by N-linked glycosylation specific to the secretory pathway. Treatment of seedlings with tunicamycin inhibits glycosylation, resulting in increased activity of secreted beta-glucuronidase fusions that result from gene trap integration downstream of exons encoding signal peptides. In the 2,059 gene trap lines that we screened, 32 secretion trap expression patterns were identified in a wide variety of tissues including embryos, meristems, and the developing vasculature. Genes disrupted by the secretion traps encode putative extracellular signaling proteins, membrane transport proteins, and novel secreted proteins of unknown function missed by conventional mutagenesis and gene prediction. Secretion traps provide a unique reagent for gene expression studies and can guide the genetic combination of loss of function alleles in related genes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom