z-logo
open-access-imgOpen Access
Purification and Characterization of a Glutathione S-Transferase from Benoxacor-Treated Maize (Zea mays)
Author(s) -
Gerard P. Irzyk,
E. Patrick Fuerst
Publication year - 1993
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.102.3.803
Subject(s) - molecular mass , chemistry , isoelectric point , biochemistry , gel electrophoresis , affinity chromatography , enzyme , ammonium sulfate precipitation , amino acid , enzyme assay , glutathione s transferase , isoelectric focusing , chromatography , glutathione , size exclusion chromatography
A glutathione S-transferase (GST) isozyme from maize (Zea mays Pioneer hybrid 3906) treated with the dichloroacetamide herbicide safener benoxacor (CGA-154281) was purified to homogeneity and partially characterized. The enzyme, assayed with metolachlor as a substrate, was purified approximately 200-fold by ammonium sulfate precipitation, anion-exchange chromatography on Mono Q resins, and affinity chromatography on S-hexylglutathione agarose from total GST activity present in etiolated shoots. The purified protein migrated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) as a single band with a molecular mass of 27 kD. Using nondenaturing PAGE, we determined that the native protein has a molecular mass of about 57 kD and that the protein exists as a dimer. Two-dimensional electrophoresis revealed only a single protein with an isoelectric point of 5.75 and molecular mass of 27 kD. These results further suggest that the protein exists as a homodimer of two identical 27-kD subunits. The enzyme was most active with substrates possessing a chloroacetamide structure. trans-Cinnamic acid and 1-chloro-2,4-dinitrobenzene were not effective substrates. Apparent Km values for the enzyme were 10.8 microM for the chloroacetamide metolachlor and 292 microM for glutathione. The enzyme was active from pH 6 to 9, with a pH optimum between 7.5 and 8. An apparently blocked amino terminus of the intact protein prevented direct amino acid sequencing. The enzyme was digested with trypsin, and the amino acid sequences of several peptide fragments were obtained. The sequence information for the isolated GST we have designated "GST IV" indicates that the enzyme is a unique maize GST but shares some homology with maize GSTs I and III.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom