z-logo
open-access-imgOpen Access
Oxidation of External NAD(P)H by Mitochondria from Taproots and Tissue Cultures of Sugar Beet (Beta vulgaris)
Author(s) -
Michela Zottini,
Giuseppe Mandolino,
Davide Zani
Publication year - 1993
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.102.2.579
Subject(s) - nad+ kinase , taproot , mitochondrion , sugar beet , nadh dehydrogenase , biochemistry , cytosol , dehydrogenase , biology , in vitro , chemistry , enzyme , botany , horticulture , protein subunit , gene
The present study compares the exogenous NAD(P)H oxidation and the membrane potential ([delta][psi]) generated in mitochondria isolated from different tissues of an important agricultural crop, sugar beet (Beta vulgaris}. We observed that mitochondria from taproots, cold-stored taproots, and in vitro-grown tissue cultures contain a functional NADH dehydrogenase, whereas only those isolated from tissue cultures displayed a functional NAD(P)H dehydrogenase. It is interesting that the NADH-dependent [delta][psi] of mitochondria from cold-stored taproots and from tissue cultures was not affected by free Ca2+ ions, whereas free Ca2+ was required for the mitochondrial NADPH oxidation by in vitro-grown cells and cytosolic NADH oxidation by mitochondria from fresh taproots. A tentative model accounting for the different response to Ca2+ ions of the NADH dehydrogenase in mitochondria from cold-stored taproots and tissue cultures of B. vulgaris is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom