z-logo
open-access-imgOpen Access
Expression of Sea Anemone Equistatin in Potato. Effects of Plant Proteases on Heterologous Protein Production
Author(s) -
Nikolay S. Outchkourov,
Boris Rogelj,
Borut Štrukelj,
Maarten A. Jongsma
Publication year - 2003
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.102.017293
Subject(s) - proteases , colorado potato beetle , heterologous , biochemistry , biology , heterologous expression , protein degradation , lysine , asparagine , protease , storage protein , amino acid , enzyme , recombinant dna , botany , gene , pest analysis
Plants are increasingly used as production platforms of various heterologous proteins, but rapid protein turnover can seriously limit the steady-state expression level. Little is known about specific plant proteases involved in this process. In an attempt to obtain potato (Solanum tuberosum cv Desirée) plants resistant to Colorado potato beetle (Leptinotarsa decemlineata Say) larvae, the protease inhibitor equistatin was expressed under the control of strong, light-inducible and constitutive promoters and was targeted to the secretory pathway with and without endoplasmic reticulum retention signal. All constructs yielded similar stepwise protein degradation patterns, which considerably reduced the amount of active inhibitor in planta and resulted in insufficient levels for resistance against Colorado potato beetle larvae. Affinity purification of the degradation products and N-terminal sequencing allowed the identification of the amino acid P(1)-positions (asparagine [Asn]-13, lysine-56, Asn-82, and arginine-151) that were cleaved in planta. The proteases involved in the equistatin degradation were characterized with synthetic substrates and inhibitors. Kininogen domain 3 completely inhibited equistatin degradation in vitro. The results indicate that arginine/lysine-specific and legumain-type Asn-specific cysteine proteases seriously impede the functional accumulation of recombinant equistatin in planta. General strategies to improve the resistance to proteases of heterologous proteins in plants are proposed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom