Starch Degradation and Distribution of the Starch-Degrading Enzymes in Vicia faba Leaves (Diurnal Oscillation of Amylolytic Activity and Starch Content in Chloroplasts)
Author(s) -
Christine Ghiena,
Margot Schulz,
H. Schnabl
Publication year - 1993
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.101.1.73
Subject(s) - chloroplast , starch , vicia faba , amylase , enzyme , biochemistry , chloroplast stroma , biology , enzyme assay , chemistry , food science , botany , thylakoid , gene
Subcellular localization of the starch-degrading enzymes in Vicia faba leaves was achieved by an electrophoretic transfer method through a starch-containing gel (SCG) and enzyme activity measurements. Total amylolytic and phosphorolytic activities were found predominantly in the extrachloroplastic fraction, whereas the debranching enzymes showed homogenous distribution between stromal and extrachloroplastic fractions. Staining of end products in the SCG revealed two isoforms of [alpha]-amylase (EC 3.2.1.1) and very low [beta]-amylase activity (EC 3.2.1.2) in the chloroplast preparation, whereas [alpha]- and [beta]-amylase exhibited higher activities in the crude extract. However, it is unclear whether the low [alpha]- and [beta]-amylase activities associated with the chloroplast are contamination or activities that are integrally associated with the chloroplast. Study of the diurnal fluctuation of the starch content and of the amylase activities under a 9-h/15-h photoperiod showed a 2-fold increase of the total amylolytic activity in the chloroplasts concurrent with the starch degradation in the dark. No fluctuation was detectable for the extrachloroplastic enzymes. The possible roles and function of the chloroplastic and extrachloroplastic hydrolytic enzymes are discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom