Association of Phosphatidylinositol Kinase, Phosphatidylinositol Monophosphate Kinase, and Diacylglycerol Kinase with the Cytoskeleton and F-Actin Fractions of Carrot (Daucus carota L.) Cells Grown in Suspension Culture
Author(s) -
Zheng Lin Tan,
Wendy F. Boss
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.100.4.2116
Subject(s) - phosphatidylinositol , daucus carota , diacylglycerol kinase , biochemistry , biology , cytoskeleton , microbiology and biotechnology , kinase , actin cytoskeleton , protein kinase c , cell , botany
Phosphatidylinositol kinase (PI), phosphatidylinositol monophosphate (PIP) kinase, and diacylglycerol (DAG) kinase activities were detected in the cytoskeletal fraction isolated from microsomes and plasma membranes of carrot (Daucus carota L.) cells grown in suspension culture. The lipid kinase activities were associated with the actin filament fraction (F-actin fraction) isolated from the cytoskeleton. The PI and PIP kinase activity in the F-actin fraction significantly increased after cells were treated with Driselase, a mixture of cell wall-degrading enzymes; however, the DAG kinase activity in the F-actin fraction was unaffected by the Driselase treatment. These data indicate that at least one form of PI, PIP, and DAG kinase preferentially associates with actin filaments and/or actin binding proteins and that cytoskeletal-associated PI and PIP kinase activities can change in response to external stimulation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom