Energy Storage of Linear and Cyclic Electron Flows in Photosynthesis
Author(s) -
Yuan Cha,
David C. Mauzerall
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.100.4.1869
Subject(s) - photosynthesis , chemistry , energy storage , photosystem i , ferredoxin , electron , photosystem ii , atomic physics , photochemistry , analytical chemistry (journal) , physics , thermodynamics , biochemistry , power (physics) , chromatography , quantum mechanics , enzyme
The energy storage of photosynthesis in the green alga Chlorella vulgaris was determined by pulsed, time-resolved photoacoustics. The energy storage of the linear electron transfer process in photosynthesis, of cyclic photosystem (PS) I, and possibly of PSII was determined by selection of excitation wavelength and of flash interval. At 695 nm excitation, a rather large cyclic PSI energy storage of 0.68 +/- 0.04 eV/quantum of energy at 8 ms after a 1-mus flash was obtained. This energy remained the same at flash intervals of 0.35 to 60 s and was independent of the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. We tentatively assign this energy to the ferredoxin-NADP-reductase-ferredoxin and oxidized cytochrome b(6)/f complexes. An efficient distribution of energy between cyclic and linear systems is obtained with the simple assumption that the turnover time of the cyclic system is slower than that of the linear system. The energy storage of linear electron flow was determined by 655 nm excitation of Chlorella with a short flash interval of 0.35 s per flash. It was calculated to be 0.50 +/- 0.03 eV/hv, close to that expected for oxygen and NADPH formation. The energy storage of PSII is determined by excitation of Chlorella at 655 nm with a long flash interval of 60 s per flash. It was calculated to be 1.07 +/- 0.05 eV/hv, consistent with the energy storage being in S-states and the secondary electron acceptor of PSII with a calculated redox energy of 1.03 eV/hv. In the presence of 1 mum 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the calculated energy storage in PSII is still significant, 0.53 +/- 0.04 eV/hv. This probably indicates a significant cyclic electron flow around PSII. These cyclic flows may contribute considerably to energy storage in photosynthesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom