Slow Degradation of the D1 Protein Is Related to the Susceptibility of Low-Light-Grown Pumpkin Plants to Photoinhibition
Author(s) -
Esa Tyystjärvi,
Kati Ali-Yrkkö,
Reetta Kettunen,
EvaMari Aro
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.100.3.1310
Subject(s) - photoinhibition , thylakoid , photosystem ii , cucurbita pepo , photosynthetic reaction centre , photosynthesis , botany , electron transport chain , chloroplast , chemistry , degradation (telecommunications) , biology , photochemistry , biophysics , horticulture , biochemistry , gene , telecommunications , computer science
Photoinhibition of photosystem II (PSII) electron transport and subsequent degradation of the D1 protein were studied in pumpkin (Cucurbita pepo L.) leaves developed under high (1000 mumol m(-2) s(-1)) and low (80 mumol m(-2) s(-1)) photon flux densities. The low-light leaves were more susceptible to high light. This difference was greatly diminished when illumination was performed in the presence of chloramphenicol, indicating that a poor capacity to repair photodamaged PSII centers is decisive in the susceptibility of low-light leaves to photoinhibition. In fact, the first phases of the repair cycle, degradation and removal of photodamaged D1 protein from the reaction center complex, occurred slowly in low-light leaves, whereas in high-light leaves the degradation of the D1 protein more readily followed photoinhibition of PSII electron transport. A modified form of the D1 protein, with slightly slower electrophoretic mobility than the original D1, accumulated in the appressed thylakoid membranes of low-light leaves during illumination and was subsequently degraded only slowly.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom