z-logo
open-access-imgOpen Access
Bronze-2 Gene Expression and Intron Splicing Patterns in Cells and Tissues of Zea mays L.
Author(s) -
Juliash,
Virginia Walbot
Publication year - 1992
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.100.1.464
Subject(s) - intron , rna splicing , gene , biology , gene expression , alternative splicing , genetics , precursor mrna , microbiology and biotechnology , exon , rna
A large fraction of the transcripts of the Bronze-2 (Bz2) gene of maize (Zea mays L.) are unspliced in purple husk tissues. The accumulation of unspliced messages could have destructive potential if the intron-bearing mRNAs are translated into aberrant proteins. Our initial studies suggested that both genetic and physiological factors may influence the degree of splicing failure. Nuclear background rather than cis-sequence effects is shown to contribute to the genetic component. The accumulation of unspliced message does not appear to be directly influenced by diurnal effects on transcript abundance, by the expression level of the Bz2 gene, or by thermal stress. We also show that maize cell cultures (Black Mexican Sweet, BMS) can be used to examine the molecular details involved in splicing failure. Much like whole maize plants, the BMS cells excise the Bz2 intron with varying degrees of efficiency. In contrast with heterologous constructs containing plant introns, splicing of the native Bz2 intron can appproach 100% in BMS cells. Splicing of transcripts from a marked, introduced gene can be compared to the endogeneous Bz2 gene facilitating analysis of the impact of sequence changes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom