z-logo
open-access-imgOpen Access
DashengandRIRE2. A Nonautonomous Long Terminal Repeat Element and Its Putative Autonomous Partner in the Rice Genome
Author(s) -
Ning Jiang,
I. King Jordan,
Susan R. Wessler
Publication year - 2002
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.015412
Subject(s) - retrotransposon , long terminal repeat , biology , genome , genetics , transposition (logic) , transposable element , oryza sativa , sequence (biology) , gene , computational biology , linguistics , philosophy
Dasheng is one of the highest copy number long terminal repeat elements and one of the most recent elements to amplify in the rice (Oryza sativa) genome. However, the absence of any significant coding capacity for retroviral proteins, including gag and pol, suggests that Dasheng is a nonautonomous element. Here, we have exploited the availability of 360 Mb of rice genomic sequence to identify a candidate autonomous element. RIRE2 is a previously described gypsy-like long terminal repeat retrotransposon with significant sequence similarity to Dasheng in the regions where putative cis factors for retrotransposition are thought to be located. Dasheng and RIRE2 elements have similar chromosomal distribution patterns and similar target site sequences, suggesting that they use the same transposition machinery. In addition, the presence of several RIRE2-Dasheng element chimeras in the genome is consistent with the copackaging of element mRNAs in the same virus-like particle. Finally, both families have recently amplified members, suggesting that they could have been co-expressed, a necessary prerequisite for RIRE2 to serve as the source of transposition machinery for Dasheng. Consistent with this hypothesis, transcripts from both elements were found in the same expressed sequence tag library.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom