z-logo
open-access-imgOpen Access
A New Type of a Multifunctional β-Oxidation Enzyme in Euglena
Author(s) -
Uwe Winkler,
W. Säftel,
H. Stabenau
Publication year - 2003
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.013151
Subject(s) - thiolase , biochemistry , enzyme , euglena gracilis , euglena , biology , dehydrogenase , aldolase a , chloroplast , gene
The biochemical and molecular properties of the beta-oxidation enzymes from algae have not been investigated yet. The present study provides such data for the phylogenetically old alga Euglena (Euglena gracilis). A novel multifunctional beta-oxidation complex was purified to homogeneity by ammonium sulfate precipitation, density gradient centrifugation, and ion-exchange chromatography. Monospecific antibodies used in immunocytochemical experiments revealed that the enzyme is located in mitochondria. The enzyme complex is composed of 3-hydroxyacyl-coenzyme A (-CoA) dehydrogenase, 2-enoyl-CoA hydratase, thiolase, and epimerase activities. The purified enzyme exhibits a native molecular mass of about 460 kD, consisting of 45.5-, 44.5-, 34-, and 32-kD subunits. Subunits dissociated from the complete complex revealed that the hydratase and the thiolase functions are located on the large subunits, whereas two dehydrogenase functions are located on the two smaller subunits. Epimerase activity was only measurable in the complete enzyme complex. From the use of stereoisomers and sequence data, it was concluded that the 2-enoyl-CoA hydratase catalyzes the formation of L-hydroxyacyl CoA isomers and that both of the different 3-hydroxyacyl-CoA dehydrogenase functions on the 32- and 34-kD subunits are specific to L-isomers as substrates, respectively. All of these data suggest that the Euglena enzyme belongs to the family of beta-oxidation enzymes that degrade acyl-CoAs via L-isomers and that it is composed of subunits comparable with subunits of monofunctional beta-oxidation enzymes. It is concluded that the Euglena enzyme phylogenetically developed from monospecific enzymes in archeons by non-covalent combination of subunits and presents an additional line for the evolutionary development of multifunctional beta-oxidation enzymes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom