z-logo
open-access-imgOpen Access
Polyamine Metabolism Is Altered in Unpollinated Parthenocarpicpat-2Tomato Ovaries
Author(s) -
Mariano Fos,
Karina Proaño,
David Alabadı́,
Fernando Nuez,
Juan Carbonell,
José L. GarcíaMartínez
Publication year - 2003
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.013037
Subject(s) - spermidine , putrescine , parthenocarpy , spermine , polyamine , ornithine decarboxylase , biology , arginine decarboxylase , biosynthesis , biochemistry , lycopersicon , mutant , botany , enzyme , gene
Facultative parthenocarpy induced by the recessive mutation pat-2 in tomato (Lycopersicon esculentum Mill.) depends on gibberellins (GAs) and is associated with changes in GA content in unpollinated ovaries. Polyamines (PAs) have also been proposed to play a role in early tomato fruit development. We therefore investigated whether PAs are able to induce parthenocarpy and whether the pat-2 mutation alters the content and metabolism of PAs in unpollinated ovaries. Application of putrescine, spermidine, and spermine to wild-type unpollinated tomato ovaries (cv Madrigal [MA/wt]) induced partial parthenocarpy. Parthenocarpic growth of MA/pat-2 (a parthenocarpic near-isogenic line to MA/wt) ovaries was negated by paclobutrazol (GA biosynthesis inhibitor), and this inhibition was counteracted by spermidine. Application of alpha-difluoromethyl-ornithine (-Orn) and/or alpha-difluoromethyl-arginine (-Arg), irreversible inhibitors of the putrescine biosynthesis enzymes Orn decarboxylase (ODC) and Arg decarboxylase, respectively, prevented growth of unpollinated MA/pat-2 ovaries. Alpha-difluoromethyl-Arg inhibition was counteracted by putrescine and GA(3), whereas that of alpha-difluoromethyl-Orn was counteracted by GA(3) but not by putrescine or spermidine. In unpollinated MA/pat-2 ovaries, the content of free spermine was significantly higher than in MA/wt ovaries. ODC activity was higher in pat-2 ovaries than in MA/wt. Transcript levels of genes encoding ODC and spermidine synthase were also higher in MA/pat-2. All together, these results strongly suggest that the parthenocarpic ability of pat-2 mutants depends on elevated PAs levels in unpollinated mutant ovaries, which correlate with an activation of the ODC pathway, probably as a consequence of elevated GA content in unpollinated pat-2 tomato ovaries.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom