AtSTP6, a New Pollen-Specific H+-Monosaccharide Symporter from Arabidopsis
Author(s) -
Joachim ScholzStarke,
Michael Büttner,
Norbert Sauer
Publication year - 2003
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.012666
Subject(s) - arabidopsis , symporter , mutant , biology , biochemistry , monosaccharide , pollen , yeast , saccharomyces cerevisiae , gene , amino acid transporter , transporter , botany
This paper describes the molecular, kinetic, and physiological characterization of AtSTP6, a new member of the Arabidopsis H(+)/monosaccharide transporter family. The AtSTP6 gene (At3g05960) is interrupted by two introns and encodes a protein of 507 amino acids containing 12 putative transmembrane helices. Expression in yeast (Saccharomyces cerevisiae) shows that AtSTP6 is a high-affinity (K(m) = 20 microM), broad-spectrum, and uncoupler-sensitive monosaccharide transporter that is targeted to the plasma membrane and that can complement a growth deficiency resulting from the disruption of most yeast hexose transporter genes. Analyses of AtSTP6-promoter::GUS plants and in situ hybridization experiments detected AtSTP6 expression only during the late stages of pollen development. A transposon-tagged Arabidopsis mutant was isolated and homozygous plants were analyzed for potential effects of the Atstp6 mutation on pollen viability, pollen germination, fertilization, and seed production. However, differences between wild-type and mutant plants could not be observed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom