z-logo
open-access-imgOpen Access
Polyamine Oxidase, a Hydrogen Peroxide-Producing Enzyme, Is Up-Regulated by Light and Down-Regulated by Auxin in the Outer Tissues of the Maize Mesocotyl
Author(s) -
Alessandra Cona,
Francesco Cenci,
Manuela Cervelli,
Rodolfo Federico,
Paolo Mariottini,
Sandra Moreno,
Riccardo Angelini
Publication year - 2003
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.011379
Subject(s) - auxin , biochemistry , hydrogen peroxide , oxidase test , cell wall , light intensity , biology , polyamine , ethylene , immunogold labelling , enzyme , microbiology and biotechnology , chemistry , biophysics , botany , gene , ultrastructure , physics , optics , catalysis
Exogenously supplied auxin (1-naphthaleneacetic acid) inhibited light-induced activity increase of polyamine oxidase (PAO), a hydrogen peroxide-producing enzyme, in the outer tissues of maize (Zea mays) mesocotyl. The same phenomenon operates at PAO protein and mRNA accumulation levels. The wall-bound to extractable PAO activity ratio was unaffected by auxin treatment, either in the dark or after light exposure. Ethylene treatment did not affect PAO activity, thus excluding an effect of auxin via increased ethylene biosynthesis. The auxin polar transport inhibitors N(1)-naphthylphthalamic acid or 2,3,5-triiodobenzoic acid caused a further increase of PAO expression in outer tissues after light treatment. The small increase of PAO expression, normally occurring in the mesocotyl epidermis during plant development in the dark, was also inhibited by auxin, although to a lesser extent with respect to light-exposed tissue, and was stimulated by N(1)-naphthylphthalamic acid or 2,3,5-triiodobenzoic acid, thus suggesting a complex regulation of PAO expression. Immunogold ultrastructural analysis in epidermal cells revealed the association of PAO with the secretory pathway and the cell walls. The presence of the enzyme in the cell walls of this tissue greatly increased in response to light treatment. Consistent with auxin effects on light-induced PAO expression, the hormone treatment inhibited the increase in immunogold staining both intraprotoplasmically and in the cell wall. These results suggest that both light and auxin finely tune PAO expression during the light-induced differentiation of the cell wall in the maize mesocotyl epidermal tissues.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom