z-logo
open-access-imgOpen Access
Nonselective Currents and Channels in Plasma Membranes of Protoplasts from Coats of Developing Seeds of Bean
Author(s) -
Wenhao Zhang,
Martha Skerrett,
N. A. Walker,
John W. Patrick,
Stephen D. Tyerman
Publication year - 2002
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.010566
Subject(s) - apoplast , biophysics , conductance , symplast , depolarization , protoplast , membrane , chemistry , phaseolus , ion transporter , patch clamp , membrane potential , reversal potential , biology , biochemistry , botany , cell wall , physics , receptor , condensed matter physics
In developing bean (Phaseolus vulgaris) seeds, phloem-imported nutrients move in the symplast from sieve elements to the ground parenchyma cells where they are transported across the plasma membrane into the seed apoplast. To study the mechanisms underlying this transport, channel currents in ground parenchyma protoplasts were characterized using patch clamp. A fast-activating outward current was found in all protoplasts, whereas a slowly activating outward current was observed in approximately 25% of protoplasts. The two currents had low selectivity for univalent cations, but the slow current was more selective for K(+) over Cl(-) (P(K):P(Cl) = 3.6-4.2) than the fast current (P(K):P(Cl) = 1.8-2.5) and also displayed Ca(2+) selectivity. The slow current was blocked by Ba(2+), whereas both currents were blocked by Gd(3+) and La(3+). Efflux of K(+) from seed coat halves was inhibited 25% by Gd(3+) and La(3+) but was stimulated by Ba(2+) and Cs(+), suggesting that only the fast current may be a component in the pathway for K(+) release. An "instantaneous" inward current observed in all protoplasts exhibited similar pharmacology and permeability for univalent cations to the fast outward current. In outside-out patches, two classes of depolarization-activated cation-selective channels were observed: one slowly activating of low conductance (determined from nonstationary noise to be 2.4 pS) and another with conductances 10-fold higher. Both channels occurred at high density. The higher conductance channel in 10 mM KCl had P(K):P(Cl) = 2.8. Such nonselective channels in the seed coat ground parenchyma cell could function to allow some of the efflux of phloem-imported univalent ions into the seed apoplast.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom