z-logo
open-access-imgOpen Access
Dominant Negative Guard Cell K+ Channel Mutants Reduce Inward-Rectifying K+ Currents and Light-Induced Stomatal Opening in Arabidopsis
Author(s) -
June M. Kwak,
Yoshiyuki Murata,
Víctor M. BaizabalAguirre,
Jennifer Merrill,
Michele Wang,
Andrea Kemper,
Scott D. Hawke,
Gary Tallman,
Julian I. Schroeder
Publication year - 2001
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.010428
Subject(s) - guard cell , arabidopsis , mutant , botany , chemistry , biophysics , biology , gene , biochemistry
Inward-rectifying potassium (K+(in)) channels in guard cells have been suggested to provide a pathway for K+ uptake into guard cells during stomatal opening. To test the proposed role of guard cell K+(in) channels in light-induced stomatal opening, transgenic Arabidopsis plants were generated that expressed dominant negative point mutations in the K+(in) channel subunit KAT1. Patch-clamp analyses with transgenic guard cells from independent lines showed that K+(in) current magnitudes were reduced by approximately 75% compared with vector-transformed controls at -180 mV, which resulted in reduction in light-induced stomatal opening by 38% to 45% compared with vector-transformed controls. Analyses of intracellular K+ content using both sodium hexanitrocobaltate (III) and elemental x-ray microanalyses showed that light-induced K+ uptake was also significantly reduced in guard cells of K+(in) channel depressor lines. These findings support the model that K+(in) channels contribute to K+ uptake during light-induced stomatal opening. Furthermore, transpirational water loss from leaves was reduced in the K+(in) channel depressor lines. Comparisons of guard cell K+(in) current magnitudes among four different transgenic lines with different K+(in) current magnitudes show the range of activities of K+(in) channels required for guard cell K+ uptake during light-induced stomatal opening.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom