Phosphorus Effects on Metabolic Processes in Monoxenic Arbuscular Mycorrhiza Cultures
Author(s) -
Pål Axel Olsson,
Ingrid M. van Aarle,
William G. Allaway,
A. E. Ashford,
Hervé Rouhier
Publication year - 2002
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.009639
Subject(s) - hypha , mycorrhiza , mycelium , phycomycetes , biology , phosphorus , polyphosphate , fungus , botany , daucus carota , arbuscular mycorrhiza , acid phosphatase , glomus , fatty acid , symbiosis , phosphate , horticulture , biochemistry , chemistry , bacteria , spore , inoculation , enzyme , genetics , organic chemistry
The influence of external phosphorus (P) on carbon (C) allocation and metabolism as well as processes related to P metabolism was studied in monoxenic arbuscular mycorrhiza cultures of carrot (Daucus carota). Fungal hyphae of Glomus intraradices proliferated from the solid minimal medium containing the colonized roots into C-free liquid minimal medium with different P treatments. The fungus formed around three times higher biomass in P-free liquid medium than in medium with 2.5 mM inorganic P (high-P). Mycelium in the second experiment was harvested at an earlier growth stage to study metabolic processes when the mycelium was actively growing. P treatment influenced the root P content and [(13)C]glucose administered to the roots 7 d before harvest gave a negative correlation between root P content and (13)C enrichment in arbuscular mycorrhiza fungal storage lipids in the extraradical hyphae. Eighteen percent of the enriched (13)C in extraradical hyphae was recovered in the fatty acid 16:1omega5 from neutral lipids. Polyphosphate accumulated in hyphae even in P-free medium. No influence of P treatment on fungal acid phosphatase activity was observed, whereas the proportion of alkaline-phosphatase-active hyphae was highest in high-P medium. We demonstrated the presence of a motile tubular vacuolar system in G. intraradices. This system was rarely seen in hyphae subjected to the highest P treatment. We concluded that the direct responses of the extraradical hyphae to the P concentration in the medium are limited. The effects found in hyphae seemed instead to be related to increased availability of P to the host root.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom