Germanium Does Not Substitute for Boron in Cross-Linking of Rhamnogalacturonan II in Pumpkin Cell Walls
Author(s) -
Tadashi Ishii,
Toshiro Matsunaga,
Hiroaki Iwai,
Shinobu Satoh,
Junji Taoshita
Publication year - 2002
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.009514
Subject(s) - germanium , germanate , cell wall , boron , cucurbita moschata , chemistry , dimer , boric acid , crystallography , monomer , horticulture , botany , silicon , biology , biochemistry , organic chemistry , polymer , medicine , ion , alternative medicine , pathology
Boron (B)-deficient pumpkin (Cucurbita moschata Duchesne) plants exhibit reduced growth, and their tissues are brittle. The leaf cell walls of these plants contain less than one-half the amount of borate cross-linked rhamnogalacturonan II (RG-II) dimer than normal plants. Supplying germanium (Ge), which has been reported to substitute for B, to B-deficient plants does not restore growth or reduce tissue brittleness. Nevertheless, the leaf cell walls of the Ge-treated plants accumulated considerable amounts of Ge. Dimeric RG-II (dRG-II) accounted for between 20% and 35% of the total RG-II in the cell walls of the second to fourth leaves from Ge-treated plants, but only 2% to 7% of the RG-II was cross-linked by germanate (dRG-II-Ge). The ability of RG-II to form a dimer is not reduced by Ge treatment because approximately 95% of the monomeric RG-II generated from the walls of Ge-treated plants is converted to dRG-II-Ge in vitro in the presence of germanium oxide and lead acetate. However, dRG-II-Ge is unstable and is converted to monomeric RG-II when the Ge is removed. Therefore, the content of dRG-II-Ge and dRG-II-B described above may not reflect the actual ratio of these in muro. (10)B-Enriched boric acid and Ge are incorporated into the cell wall within 10 min after their foliar application to B-deficient plants. Foliar application of (10)B but not Ge results in an increase in the proportion of dRG-II in the leaf cell wall. Taken together, our results suggest that Ge does not restore the growth of B-deficient plants.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom