
Resistance of Cultivated Tomato to Cell Content-Feeding Herbivores Is Regulated by the Octadecanoid-Signaling Pathway
Author(s) -
Chuanyou Li,
Mark M. Williams,
Ying-Tsu Loh,
Gyu In Lee,
Gregg A. Howe
Publication year - 2002
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.005314
Subject(s) - biology , jasmonic acid , spider mite , tetranychus urticae , lycopersicon , botany , mutant , genetically modified crops , gene , transgene , mite , genetics
The octadecanoid signaling pathway has been shown to play an important role in plant defense against various chewing insects and some pathogenic fungi. Here, we examined the interaction of a cell-content feeding arachnid herbivore, the two-spotted spider mite (Tetranychus urticae Koch), with cultivated tomato (Lycopersicon esculentum) and an isogenic mutant line (defenseless-1 [def-1]) that is deficient in the biosynthesis of the octadecanoid pathway-derived signal, jasmonic acid (JA). Spider mite feeding and fecundity on def-1 plants was significantly greater than on wild-type plants. Decreased resistance of def-1 plants was correlated with reduced JA accumulation and expression of defensive proteinase inhibitor (PI) genes, which were induced in mite-damaged wild-type leaves. Treatment of def-1 plants with methyl-JA restored resistance to spider mite feeding and reduced the fecundity of female mites. Plants expressing a 35S::prosystemin transgene that constitutively activates the octadecanoid pathway in a Def-1-dependent manner were highly resistant to attack by spider mites and western flower thrips (Frankliniella occidentalis), another cell-content feeder of economic importance. These findings indicate that activation of the octadecanoid signaling pathway promotes resistance of tomato to a broad spectrum of herbivores. The techniques of amplified fragment length polymorphism (AFLP) and bulk segregant analysis were used to map the Def-1 gene to a region on the long arm of chromosome 3 that is genetically separable from the map position of known JA biosynthetic genes. Tight linkage of Def-1 to a T-DNA insertion harboring the maize (Zea mays) Dissociation transposable element suggests a strategy for directed transposon tagging of the gene.