z-logo
open-access-imgOpen Access
Activation Tagging Using the En-I Maize Transposon System in Arabidopsis
Author(s) -
Nayelli MarschMartínez,
Raffaella Greco,
Gert van Arkel,
Luís HerreraEstrella,
Andy Pereira
Publication year - 2002
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.003327
Subject(s) - mutant , arabidopsis , transposable element , biology , selectable marker , population , transformation (genetics) , genetics , gene , demography , sociology
A method for the generation of stable activation tag inserts was developed in Arabidopsis using the maize (Zea mays) En-I transposon system. The method employs greenhouse selectable marker genes that are useful to efficiently generate large populations of insertions. A population of about 8,300 independent stable activation tag inserts has been produced. Greenhouse-based screens for mutants in a group of plants containing about 2,900 insertions revealed about 31 dominant mutants, suggesting a dominant mutant frequency of about 1%. From the first batch of about 400 stable insertions screened in the greenhouse, four gain-in-function, dominant activation-tagged, morphological mutants were identified. A novel gain-in-function mutant called thread is described, in which the target gene belongs to the same family as the YUCCA flavin-mono-oxygenase that was identified by T-DNA activation tagging. The high frequency of identified gain-in-function mutants in the population suggests that the En-I system described here is an efficient strategy to saturate plant genomes with activation tag inserts. Because only a small number of primary transformants are required to generate an activation tag population, the En-I system appears to be an attractive alternative to study plant species where the present transformation methods have low efficiencies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom