z-logo
open-access-imgOpen Access
Influence of the Diadinoxanthin Pool Size on Photoprotection in the Marine Planktonic Diatom Phaeodactylum tricornutum
Author(s) -
Johann Lavaud,
B. Rousseau,
Hans J. van Gorkom,
AnneLise Etienne
Publication year - 2002
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.002014
Subject(s) - photoprotection , phaeodactylum tricornutum , xanthophyll , photochemistry , photosystem ii , photoinhibition , photosynthetic reaction centre , quenching (fluorescence) , chlorophyll fluorescence , photosynthesis , quantum yield , biology , chemistry , fluorescence , botany , diatom , electron transfer , physics , optics
The pool size of the xanthophyll cycle pigment diadinoxanthin (DD) in the diatom Phaeodactylum tricornutum depends on illumination conditions during culture. Intermittent light caused a doubling of the DD pool without significant change in other pigment contents and photosynthetic parameters, including the photosystem II (PSII) antenna size. On exposure to high-light intensity, extensive de-epoxidation of DD to diatoxanthin (DT) rapidly caused a very strong quenching of the maximum chlorophyll fluorescence yield (F(m), PSII reaction centers closed), which was fully reversed in the dark. The non-photochemical quenching of the minimum fluorescence yield (F(o), PSII centers open) decreased the quantum efficiency of PSII proportionally. For both F(m) and F(o), the non-photochemical quenching expressed as F/F' - 1 (with F' the quenched level) was proportional to the DT concentration. However, the quenching of F(o) relative to that of F(m) was much stronger than random quenching in a homogeneous antenna could explain, showing that the rate of photochemical excitation trapping was limited by energy transfer to the reaction center rather than by charge separation. The cells can increase not only the amount of DT they can produce, but also its efficiency in competing with the PSII reaction center for excitation. The combined effect allowed intermittent light grown cells to down-regulate PSII by 90% and virtually eliminated photoinhibition by saturating light. The unusually rapid and effective photoprotection by the xanthophyll cycle in diatoms may help to explain their dominance in turbulent waters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom