z-logo
open-access-imgOpen Access
LeCPK1, a Calcium-Dependent Protein Kinase from Tomato. Plasma Membrane Targeting and Biochemical Characterization
Author(s) -
Frank Rutschmann,
Urs Stalder,
Markus Piotrowski,
Claudia Oecking,
Andreas Schaller
Publication year - 2002
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.000869
Subject(s) - autophosphorylation , biochemistry , protein kinase a , biology , calmodulin , kinase , microbiology and biotechnology , fusion protein , chemistry , recombinant dna , enzyme , gene
The cDNA of LeCPK1, a calcium-dependent protein kinase, was cloned from tomato (Lycopersicon esculentum Mill.). LeCPK1 was expressed in Escherichia coli and purified from bacterial extracts. The recombinant protein was shown to be a functional protein kinase using a synthetic peptide as the substrate (syntide-2, Km = 85 microM). Autophosphorylation of LeCPK1 was observed on threonine and serine residues, one of which was identified as serine-439. Kinase activity was shown to be Ca2+ dependent and required the C-terminal, calmodulin-like domain of LeCPK1. Two classes of high- and low-affinity Ca2+-binding sites were observed, exhibiting dissociation constants of 0.6 and 55 microM, respectively. LeCPK1 was found to phosphorylate the regulatory C-terminal domain of the plasma membrane H+-ATPase in vitro. A potential role in the regulation of proton pump activity is corroborated by the apparent colocalization of the plasma membrane H+-ATPase and LeCPK1 in vivo. Upon transient expression in suspension-cultured cells, a C-terminal fusion of LeCPK1 with the green fluorescent protein was targeted to the plasma membrane. Myristoylation of the LeCPK1 N terminus was found to be required for plasma membrane targeting.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here