z-logo
open-access-imgOpen Access
Isolation and Characterization of a Novel Ribosome-Inactivating Protein from Root Cultures of Pokeweed and Its Mechanism of Secretion from Roots
Author(s) -
Sang-Wook Park,
Christopher B. Lawrence,
James C. Linden,
Jorge M. Vivanco
Publication year - 2002
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.000794
Subject(s) - ribosome , isolation (microbiology) , secretion , mechanism (biology) , biology , chemistry , microbiology and biotechnology , biochemistry , rna , physics , gene , quantum mechanics
Ribosome-inactivating proteins are N-glycosidases that remove a specific adenine from the sarcin/ricin loop of the large rRNA, thus arresting protein synthesis at the translocation step. In the present study, a novel type I ribosome-inactivating protein, termed PAP-H, was purified from Agrobacterium rhizogenes-transformed hairy roots of pokeweed (Phytolacca americana). The protein was purified by anion- and cation-exchange chromatography. PAP-H has a molecular mass of 29.5 kD as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its isoelectric point was determined to be 7.8. Yeast (Saccharomyces cerevisiae) ribosomes incubated with PAP-H released the 360-nucleotide diagnostic fragment from the 26S rRNA upon aniline treatment, an indication of its ribosome-inactivating activity. Using immunofluorescence microscopy, PAP-H was found to be located in the cell walls of hairy roots and root border cells. PAP-H was determined to be constitutively secreted as part of the root exudates, with its secretion enhanced by a mechanism mediated by ethylene induction. Purified PAP-H did not show in vitro antifungal activity against soil-borne fungi. In contrast, root exudates containing PAP-H as well as additional chitinase, beta-1,3-glucanase, and protease activities did inhibit the growth of soil-borne fungi. We found that PAP-H depurinates fungal ribosomes in vitro and in vivo, suggesting an additive mechanism that enables PAP-H to penetrate fungal cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here