Observation of a Field-Driven Structural Phase Transition in the Flux Line Lattice inErNi 2 B 2 C
Author(s) -
M. R. Eskildsen,
P. L. Gammel,
Bradley P. Barber,
U. Yaron,
A. P. Ramirez,
David A. Huse,
D. J. Bishop,
C. A. Bolle,
Charles M. Lieber,
S. Oxx,
S. Sridhar,
N.H. Andersen,
Kell Mortensen,
P. C. Canfield
Publication year - 1997
Publication title -
physical review letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.688
H-Index - 673
eISSN - 1079-7114
pISSN - 0031-9007
DOI - 10.1103/physrevlett.78.1968
Subject(s) - tetragonal crystal system , physics , square lattice , condensed matter physics , lattice (music) , hexagonal lattice , phase transition , scattering , phase (matter) , optics , quantum mechanics , antiferromagnetism , ising model , acoustics
Small-angle neutron scattering and magnetic decoration both demonstrate a topological transition in the flux line lattice (FLL) in ErNi{sub 2}B{sub 2}C. The high-field square lattice slowly transforms into a hexagonal lattice via an area preserving [100] rhombohedral distortion below roughly 500Oe. The square FLL is aligned with the [110] direction of the tetragonal crystal, while the two domains of the hexagonal FLL are aligned with [100] and [010]. The differences in pinning for the two FLL topologies are reflected in the rf kinetic inductance. {copyright} {ital 1997} {ital The American Physical Society}
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom