
Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance ofn -TypeMg 2 Si 1 − x Sn x
Author(s) -
Wei Liu,
Xiaojian Tan,
Kang Yin,
Huijun Liu,
Xinfeng Tang,
Jing Shi,
Qingjie Zhang,
Ctirad Uher
Publication year - 2012
Publication title -
physical review letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.688
H-Index - 673
eISSN - 1079-7114
pISSN - 0031-9007
DOI - 10.1103/physrevlett.108.166601
Subject(s) - seebeck coefficient , thermoelectric effect , figure of merit , materials science , effective mass (spring–mass system) , thermoelectric materials , condensed matter physics , degeneracy (biology) , thermal conduction , physics , thermodynamics , optoelectronics , quantum mechanics , bioinformatics , biology
Mg(2)Si and Mg(2)Sn are indirect band gap semiconductors with two low-lying conduction bands (the lower mass and higher mass bands) that have their respective band edges reversed in the two compounds. Consequently, for some composition x, Mg(2)Si(1-x)Sn(x) solid solutions must display a convergence in energy of the two conduction bands. Since Mg(2)Si(1-x)Sn(x) solid solutions are among the most prospective of the novel thermoelectric materials, we aim on exploring the influence of such a band convergence (valley degeneracy) on the Seebeck coefficient and thermoelectric properties in a series of Mg(2)Si(1-x)Sn(x) solid solutions uniformly doped with Sb. Transport measurements carried out from 4 to 800 K reveal a progressively increasing Seebeck coefficient that peaks at x=0.7. At this concentration the thermoelectric figure of merit ZT reaches exceptionally large values of 1.3 near 700 K. Our first principles calculations confirm that at the Sn content x≈0.7 the two conduction bands coincide in energy. We explain the high Seebeck coefficient and ZT values as originating from an enhanced density-of-states effective mass brought about by the increased valley degeneracy as the two conduction bands cross over. We corroborate the increase in the density-of-states effective mass by measurements of the low temperature specific heat. The research suggests that striving to achieve band degeneracy by means of compositional variations is an effective strategy for enhancing the thermoelectric properties of these materials.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom