Trapping and exclusion zones in complex streaming patterns around a large assembly of microfluidic bubbles under ultrasound
Author(s) -
Thomas Combriat,
Flore MekkiBerrada,
Pierre Thibault,
Philippe Marmottant
Publication year - 2018
Publication title -
physical review fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.244
H-Index - 37
eISSN - 2469-9918
pISSN - 2469-990X
DOI - 10.1103/physrevfluids.3.013602
Subject(s) - acoustic streaming , microfluidics , flow (mathematics) , trapping , mechanics , streaming current , field (mathematics) , geology , acoustics , materials science , physics , nanotechnology , ultrasonic sensor , geography , mathematics , forestry , electrokinetic phenomena , pure mathematics
Pulsating bubbles have proved to be a versatile tool for trapping and sorting particles. In this article, we investigate the different streaming patterns that can be obtained with a group of bubbles in a confined geometry under ultrasound. In the presence of an external flow strong enough to oppose the streaming velocities but not drag the trapped bubbles, we observe either the appearance of exclusion zones near the bubbles or asymmetric streaming patterns that we interpret as the superposition of a two-dimensional (2D) streaming function and of a potential flow. When studying a lattice of several bubbles, we show that the streaming pattern can be accurately predicted by superimposing the contributions of every pair of bubbles present in the lattice, thus allowing one to predict the sizes and the shapes of exclusion zones created by a group of bubbles under acoustic excitation. We suggest that such systems could be used to enhance mixing at a small scale or to catch and release chemical species initially trapped in vortices created around bubble pairs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom