z-logo
open-access-imgOpen Access
Recursive construction ofHiggs+multipartonloop amplitudes: The last of the “ϕ-nite” loop amplitudes
Author(s) -
Carola F. Berger,
Vittorio Del Duca,
Lance J. Dixon
Publication year - 2006
Publication title -
physical review. d. particles, fields, gravitation, and cosmology/physical review. d, particles, fields, gravitation, and cosmology
Language(s) - English
Resource type - Journals
eISSN - 1550-7998
pISSN - 1550-2368
DOI - 10.1103/physrevd.74.094021
Subject(s) - physics , particle physics , gluon , quark , quantum chromodynamics , coupling (piping) , higgs boson , operator (biology) , mathematical physics , mechanical engineering , biochemistry , transcription factor , chemistry , repressor , engineering , gene
We consider a scalar field, such as the Higgs boson H, coupled to gluons via the effective operator H tr G_{mu nu} G^{mu nu} induced by a heavy-quark loop. We treat H as the real part of a complex field phi which couples to the self-dual part of the gluon field-strength, via the operator phi tr G_{SD mu nu} G_{SD}^{mu nu}, whereas the conjugate field phi^dagger couples to the anti-self-dual part. There are three infinite sequences of amplitudes coupling phi to quarks and gluons that vanish at tree level, and hence are finite at one loop, in the QCD coupling. Using on-shell recursion relations, we find compact expressions for these three sequences of amplitudes and discuss their analytic properties

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom