Inflation model constraints from the Wilkinson Microwave Anisotropy Probe three-year data
Author(s) -
William H. Kinney,
Edward W. Kolb,
A. Melchiorri,
Antonio Riotto
Publication year - 2006
Publication title -
physical review. d. particles, fields, gravitation, and cosmology/physical review. d, particles, fields, gravitation, and cosmology
Language(s) - English
Resource type - Journals
eISSN - 1550-7998
pISSN - 1550-2368
DOI - 10.1103/physrevd.74.023502
Subject(s) - cmb cold spot , physics , cosmic microwave background , inflation (cosmology) , astrophysics , spectral index , spectral density , amplitude , planck , cosmic background radiation , anisotropy , theoretical physics , spectral line , astronomy , quantum mechanics , statistics , mathematics
We extract parameters relevant for distinguishing among single-field inflation models from the Wilkinson Microwave Anisotropy Probe (WMAP) three-year data set, and also from WMAP in combination with the Sloan Digital Sky Survey (SDSS) galaxy power spectrum. Our analysis leads to the following conclusions: (1) the Harrison-Zel'dovich model is consistent with both data sets at a 95% confidence level; (2) there is no strong evidence for running of the spectral index of scalar perturbations; (3) Potentials of the form V {infinity} {phi}{sup P} are consistent with the data for p = 2, and are marginally consistent with the WMAP data considered alone for p = 4, but ruled out by WMAP combined with SDSS. We perform a ''Monte Carlo reconstruction'' of the inflationary potential, and find that: (1) there is no evidence to support an observational lower bound on the amplitude of gravitational waves produced during inflation; (2) models such as simple hybrid potentials which evolve toward an inflationary late-time attractor in the space of flow parameters are strongly disfavored by the data, (3) models selected with even a weak slow-roll prior strongly cluster in the region favoring a ''red'' power spectrum and no running of the spectral index, consistent with simple single-field inflation models
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom