z-logo
open-access-imgOpen Access
Fresh look at axions and SN 1987A
Author(s) -
W. Keil,
HansThomas Janka,
David N. Schramm,
G. Sigl,
Michael S. Turner,
John Ellis
Publication year - 1997
Publication title -
physical review. d. particles, fields, gravitation, and cosmology/physical review. d. particles and fields
Language(s) - English
Resource type - Journals
eISSN - 1089-4918
pISSN - 0556-2821
DOI - 10.1103/physrevd.56.2419
Subject(s) - axion , physics , nucleon , pion , neutrino , particle physics , saturation (graph theory) , limit (mathematics) , nuclear physics , dark matter , mathematical analysis , mathematics , combinatorics
We re-examine the very stringent limits on the axion mass based on the strength and duration of the neutrino signal from SN 1987A, in the light of new measurements of the axial-vector coupling strength of nucleons, possible suppression of axion emission due to many-body effects, and additional emission processes involving pions. The suppression of axion emission due to nucleon spin fluctuations induced by many-body effects degrades previous limits by a factor of about 2. Emission processes involving thermal pions can strengthen the limits by a factor of 3-4 within a perturbative treatment that neglects saturation of nucleon spin fluctuations. Inclusion of saturation effects, however, tends to make the limits less dependent on pion abundances. The resulting axion mass limit also depends on the precise couplings of the axion and ranges from 0.5x10**(-3) eV to 6x10**(-3) eV

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom